
NAG Fortran Library Routine Document

D02TVF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02TVF is a setup routine which must be called prior to the first call of the nonlinear two-point boundary
value solver D02TKF.

2 Specification

SUBROUTINE D02TVF(NEQ, M, NLBC, NRBC, NCOL, TOLS, MXMESH, NMESH, MESH,
1 IPMESH, RWORK, LRWORK, IWORK, LIWORK, IFAIL)

INTEGER NEQ, M(NEQ), NLBC, NRBC, NCOL, MXMESH, NMESH,
1 IPMESH(MXMESH), LRWORK, IWORK(LIWORK), LIWORK, IFAIL
real TOLS(NEQ), MESH(MXMESH), RWORK(LRWORK)

3 Description

D02TVF and its associated routines (D02TKF, D02TXF, D02TYF and D02TZF) solve the two-point
boundary value problem for a nonlinear system of ordinary differential equations
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over an interval ½a; b� subject to p (> 0) nonlinear boundary conditions at a and q (> 0) nonlinear

boundary conditions at b, where pþ q ¼
Pn

1 mi. Note that y
ðmÞ
i ðxÞ is the mth derivative of the ith

solution component. Hence y
ð0Þ
i ðxÞ ¼ yiðxÞ. The left boundary conditions at a are defined as

giðzðyðaÞÞÞ ¼ 0; i ¼ 1; 2; . . . ; p;

and the right boundary conditions at b as

�ggjðzðyðbÞÞÞ ¼ 0; j ¼ 1; 2; . . . ; q;

where y ¼ ðy1; y2; . . . ; ynÞ and

zðyðxÞÞ ¼ ðy1ðxÞ; y
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See Section 8 for information on how boundary value problems of a more general nature can be treated.

D02TVF is used to specify an initial mesh, error requirements and other details. D02TKF is then used to
solve the boundary value problem.

The solution routine D02TKF proceeds as follows. A modified Newton method is applied to the equations

y
ðmiÞ
i ðxÞ � fiðx; zðyðxÞÞÞ ¼ 0; i ¼ 1; . . . ; n

and the boundary conditions. To solve these equations numerically the components yi are approximated
by piecewise polynomials vij using a monomial basis on the jth mesh sub-interval. The coefficients of the

polynomials vij form the unknowns to be computed. Collocation is applied at Gaussian points

v
ðmiÞ
ij ðxjkÞ � fiðxjk; zðvðxjkÞÞÞ ¼ 0; i ¼ 1; . . . ; n;
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where xjk is the kth collocation point in the jth mesh sub-interval. Continuity at the mesh points is

imposed, that is

vijðxjþ1Þ � vi;jþ1ðxjþ1Þ ¼ 0; i ¼ 1; 2; . . . ; n;

where xjþ1 is the right-hand end of the jth mesh sub-interval. The linearized collocation equations and

boundary conditions, together with the continuity conditions, form a system of linear algebraic equations
which are solved using F01LHF and F04LHF. For use in the modified Newton method, an approximation
to the solution on the initial mesh must be supplied via the procedure argument GUESS of D02TKF.

The solver attempts to satisfy the conditions

kyi � vik
ð1:0þ kvikÞ

� TOLSðiÞ; i ¼ 1; 2; . . . ; n; ð1Þ

where vi is the approximate solution for the ith solution component and TOLS is supplied by the user.
The mesh is refined by trying to equidistribute the estimated error in the computed solution over all mesh
sub-intervals, and an extrapolation-like test (doubling the number of mesh sub-intervals) is used to check
for (1).

The routines are based on modified versions of the codes COLSYS and COLNEW (Ascher et al. (1979)
and Ascher and Bader (1987)). A comprehensive treatment of the numerical solution of boundary value
problems can be found in Ascher et al. (1988) and Keller (1992).

4 References
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solver SIAM J. Sci. Stat. Comput. 8 483–500
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boundary value problems Math. Comput. 33 659–679

Ascher U M, Mattheij R M M and Russell R D (1988) Numerical Solution of Boundary Value Problems
for Ordinary Differential Equations Prentice Hall, Englewood Cliffs, NJ

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Keller H B (1992) Numerical Methods for Two-point Boundary-value Problems Dover, New York

Schwartz I B (1983) Estimating regions of existence of unstable periodic orbits using computer-based
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5 Parameters

1: NEQ – INTEGER Input

On entry: the number of ordinary differential equations to be solved, n.

Constraint: NEQ � 1.

2: M(NEQ) – INTEGER array Input

On entry: the order, mi, of the ith differential equation, for i ¼ 1; 2; . . . ; n.

Constraint: 1 � MðiÞ � 4, for i ¼ 1; 2; . . . ; n.

3: NLBC – INTEGER Input

On entry: the number of left boundary conditions, p, defined at the left-hand end, a (¼ MESHð1Þ).
Constraint: NLBC � 1.
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4: NRBC – INTEGER Input

On entry: the number of right boundary conditions, q, defined at the right-hand end,
b (¼ MESHðNMESHÞ).
Constraints:

NRBC � 1,

NLBCþ NRBC ¼
Pn

1 MðiÞ.

5: NCOL – INTEGER Input

On entry: the number of collocation points to be used in each mesh sub-interval.

Constraint: mmax � NCOL � 7, where mmax ¼ maxðMðiÞÞ.

6: TOLS(NEQ) – real array Input

On entry: the error requirement for the ith solution component.

Constraint: 100�machine precision < TOLSðiÞ < 1:0, for i ¼ 1; 2; . . . ; n.

7: MXMESH – INTEGER Input

On entry: the maximum number of mesh points to be used during the solution process.

Constraint: MXMESH � 2� NMESH� 1.

8: NMESH – INTEGER Input

On entry: the number of points to be used in the initial mesh of the solution process.

Constraint: NMESH � 6.

9: MESH(MXMESH) – real array Input

On entry: the positions of the initial NMESH mesh points. The remaining elements of MESH need
not be set. You should try to place the mesh points in areas where you expect the solution to vary
most rapidly. In the absence of any other information the points should be equally distributed on
½a; b�.
MESH(1) must contain the left boundary point, a, and MESH(NMESH) must contain the right
boundary point, b.

Constraint: MESHðiÞ < MESHðiþ 1Þ, for i ¼ 1; 2; . . . ;NMESH� 1.

10: IPMESH(MXMESH) – INTEGER array Input

On entry: IPMESHðiÞ specifies whether or not the initial mesh point defined in MESHðiÞ,
i ¼ 1; . . . ;NMESH, should be a fixed point in all meshes computed during the solution process.
The remaining elements of IPMESH need not be set.

IPMESHðiÞ ¼ 1 indicates that MESHðiÞ should be a fixed point in all meshes.

IPMESHðiÞ ¼ 2 indicates that MESHðiÞ is not a fixed point.

Constraints:

IPMESHð1Þ ¼ 1 and IPMESHðNMESHÞ ¼ 1, (that is the left and right boundary points, a
and b, must be fixed points, in all meshes)
IPMESHðiÞ ¼ 1 or 2, i ¼ 2; 3; . . . ;NMESH� 1.

11: RWORK(LRWORK) – real array Output

On exit: contains information for use by D02TKF. This must be the same array as will be supplied
to D02TKF. The contents of this array must remain unchanged between calls.
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12: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which D02TVF
is called.

Suggested value: LRWORK ¼ MXMESH� ð109� N2 þ 78� Nþ 7Þ, which will permit
MXMESH mesh points for a system of N differential equations regardless of their order or the
number of collocation points used.

Constraint:

LRWORK � 50þ NEQ� ðmmax � ð1þ NEQþmaxðNLBC;NRBCÞÞ þ 6Þ �
kn � ðkn þ 6Þ �m� � ðkn þm� � 2Þ þMXMESH� ððm� þ 3Þð2m� þ 3Þ �
3þ knðkn þm� þ 6ÞÞ þMXMESH=2,
where m� ¼

Pn
1 MðiÞ and kn ¼ NCOL� NEQ.

13: IWORK(LIWORK) – INTEGER array Output

On exit: contains information for use by D02TKF. This must be the same array as will be supplied
to D02TKF. The contents of this array must remain unchanged between calls.

14: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which D02TVF
is called.

Suggested value: LIWORK ¼ MXMESH� ð11� Nþ 6Þ, which will permit MXMESH mesh
points for a system of N differential equations regardless of their order or the number of collocation
points used.

Constraint: LIWORK � 23þ 3� NEQ� kn þMXMESH� ðm� þ kn þ 4Þ.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NEQ < 1,
or MðiÞ < 1, for some i,
or MðiÞ > 4, for some i,
or NMESH < 6,
or the values of MESH are not strictly increasing,
or IPMESHðiÞ is invalid for some i,
or MXMESH < 2� NMESH� 1,
or NCOL < mmax, where mmax ¼ maxðMðiÞÞ,
or NCOL > 7,
or NLBC < 1,
or NRBC < 1,
or a value of TOLS is invalid,
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or NLBCþ NRBC 6¼
Pn

1 MðiÞ,
or LRWORK or LIWORK is too small.

7 Accuracy

Not applicable.

8 Further Comments

For problems where sharp changes of behaviour are expected over short intervals it may be advisable to:

use a large value for NCOL;

cluster the initial mesh points where sharp changes in behaviour are expected;

maintain fixed points in the mesh using the argument IPMESH to ensure that the remeshing process
does not inadvertently remove mesh points from areas of known interest before they are detected
automatically by the algorithm.

8.1 Nonseparated Boundary Conditions

A boundary value problem with nonseparated boundary conditions can be treated by transformation to an
equivalent problem with separated conditions. As a simple example consider the system

y01 ¼ f1ðx; y1; y2Þ

y02 ¼ f2ðx; y1; y2Þ
on ½a; b� subject to the boundary conditions

g1ðy1ðaÞÞ ¼ 0

g2ðy2ðaÞ; y2ðbÞÞ ¼ 0:

By adjoining the trivial ordinary differential equation

r0 ¼ 0;

which implies rðaÞ ¼ rðbÞ, and letting rðbÞ ¼ y2ðbÞ, say, we have a new system

y01 ¼ f1ðx; y1; y2Þ
y02 ¼ f2ðx; y1; y2Þ
r0 ¼ 0;

subject to the separated boundary conditions

g1ðy1ðaÞÞ ¼ 0

g2ðy2ðaÞ; rðaÞÞ ¼ 0

y2ðbÞ � rðbÞ ¼ 0:

There is an obvious overhead in adjoining an extra differential equation: the system to be solved is
increased in size.

8.2 Multipoint Boundary Value Problems

Multipoint boundary value problems, that is problems where conditions are specified at more than two
points, can also be transformed to an equivalent problem with two boundary points. Each sub-interval
defined by the multipoint conditions can be transformed onto the interval ½0; 1�, say, leading to a larger set
of differential equations. The boundary conditions of the transformed system consist of the original
boundary conditions and the conditions imposed by the requirement that the solution components be
continuous at the interior break points. For example, consider the equation

yð3Þ ¼ fðt; y; yð1Þ; yð2ÞÞ on ½a; c�
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subject to the conditions

yðaÞ ¼ A
yðbÞ ¼ B

yð1ÞðcÞ ¼ C

where a < b < c. This can be transformed to the system

y
ð3Þ
1 ¼ fðt; y1; y

ð1Þ
1 ; y

ð2Þ
1 Þ

y
ð3Þ
2 ¼ fðt; y2; y

ð1Þ
2 ; y

ð2Þ
2 Þ

)
on ½0; 1�

where

y1 � y on ½a; b�
y2 � y on ½b; c�;

subject to the boundary conditions

y1ð0Þ ¼ A
y1ð1Þ ¼ B

y
ð1Þ
2 ð1Þ ¼ C
y2ð0Þ ¼ B ðfrom y1ð1Þ ¼ y2ð0ÞÞ
y
ð1Þ
1 ð1Þ ¼ y

ð1Þ
2 ð0Þ

y
ð2Þ
1 ð1Þ ¼ y

ð2Þ
2 ð0Þ:

In this instance two of the resulting boundary conditions are nonseparated but they may next be treated as
described above.

8.3 High Order Systems

Systems of ordinary differential equations containing derivatives of order greater than four can always be
reduced to systems of order suitable for treatment by D02TVF and its related routines. For example
suppose we have the sixth-order equation

yð6Þ ¼ �y:

Writing the variables y1 ¼ y and y2 ¼ yð4Þ we obtain the system

y
ð4Þ
1 ¼ y2
y
ð2Þ
2 ¼ �y1

which has maximal order four, or writing the variables y1 ¼ y and y2 ¼ yð3Þ we obtain the system

y
ð3Þ
1 ¼ y2
y
ð3Þ
2 ¼ �y1

which has maximal order three. The best choice of reduction by choosing new variables will depend on
the structure and physical meaning of the system. Note that you will control the error in each of the
variables y1 and y2. Indeed, if you wish to control the error in certain derivatives of the solution of an
equation of order greater than one, then you should make those derivatives new variables.

8.4 Fixed Points and Singularities

The solver routine D02TKF employs collocation at Gaussian points in each sub-interval of the mesh.
Hence the coefficients of the differential equations are not evaluated at the mesh points. Thus, fixed points
should be specified in the mesh where either the coefficients are singular, or the solution has less
smoothness, or where the differential equations should not be evaluated. Singular coefficients at boundary
points often arise when physical symmetry is used to reduce partial differential equations to ordinary
differential equations. These do not pose a direct numerical problem for using this code but they can
severely impact its convergence.
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8.5 Numerical Jacobians

The solver routine D02TKF requires an external procedure FJAC to evaluate the partial derivatives of fi
with respect to the elements of zðyÞ (¼ ðy1; y11; . . . ; yðm1�1Þ

1 ; y2; . . . ; y
ðmn�1Þ
n Þ). In cases where the partial

derivatives are difficult to evaluate, numerical approximations can be used. However, this approach might
have a negative impact on the convergence of the modified Newton method. You could consider the use
of symbolic mathematic packages and/or automatic differentiation packages if available to you.

See Section 9 of the document for D02TZF for an example using numerical approximations to the
Jacobian. There central differences are used and each fi is assumed to depend on all the components of z.
This requires two evaluations of the system of differential equations for each component of z. The
perturbation used depends on the size of each component of z and a minimum quantity dependent on the
machine precision. The cost of this approach could be reduced by employing an alternative difference
scheme and/or by only perturbing the components of z which appear in the definitions of the fi. A
discussion on the choice of perturbation factors for use in finite difference approximations to partial
derivatives can be found in Gill et al. (1981).

9 Example

The following example is used to illustrate the treatment of nonseparated boundary conditions. See also
D02TKF, D02TXF, D02TYF and D02TZF, for the illustration of other facilities.

The following equations model of the spread of measles. See Schwartz (1983). Under certain assumptions
the dynamics of the model can be expressed as

y01 ¼ �� �ðxÞy1y3
y02 ¼ �ðxÞy1y3 � y2=�
y03 ¼ y2=�� y3=�

subject to the periodic boundary conditions

yið0Þ ¼ yið1Þ; i ¼ 1; 2; 3:

Here y1; y2 and y3 are respectively the proportions of susceptibles, infectives and latents to the whole
population. � (¼ 0:0279 years) is the latent period, � (¼ 0:01 years) is the infectious period and �
(¼ 0:02) is the population birth rate. �ðxÞ ¼ �0ð1:0þ cos 2�xÞ is the contact rate where �0 ¼ 1575:0.

The nonseparated boundary conditions are treated as described in Section 8 of the documents for D02TVF
by adjoining the trivial differential equations

y04 ¼ 0

y05 ¼ 0

y06 ¼ 0

that is y4; y5 and y6 are constants. The boundary conditions of the augmented system can then be posed in
the separated form

y1ð0Þ � y4ð0Þ ¼ 0

y2ð0Þ � y5ð0Þ ¼ 0

y3ð0Þ � y6ð0Þ ¼ 0

y1ð1Þ � y4ð1Þ ¼ 0

y2ð1Þ � y5ð1Þ ¼ 0

y3ð1Þ � y6ð1Þ ¼ 0:

This is a relatively easy problem and an (arbitrary) initial guess of 1 for each component suffices, even
though two components of the solution are much smaller than 1.
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9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* D02TVF Example Program Text
* Mark 17 Release. NAG Copyright 1995.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, MMAX, NLBC, NRBC, NCOL, MXMESH
PARAMETER (NEQ=6,MMAX=1,NLBC=3,NRBC=3,NCOL=5,MXMESH=100)
INTEGER LRWORK, LIWORK
PARAMETER (LRWORK=MXMESH*(109*NEQ**2+78*NEQ+7),

+ LIWORK=MXMESH*(11*NEQ+6))
* .. Scalars in Common ..

real BETA0, ETA, LAMBDA, MU, PI
* .. Local Scalars ..

real ERMX
INTEGER I, IERMX, IFAIL, IJERMX, NMESH

* .. Local Arrays ..
real MESH(MXMESH), RWORK(LRWORK), TOL(NEQ),

+ Y(NEQ,0:MMAX-1)
INTEGER IPMESH(MXMESH), IWORK(LIWORK), M(NEQ)

* .. External Subroutines ..
EXTERNAL D02TKF, D02TVF, D02TYF, D02TZF, FFUN, FJAC,

+ GAFUN, GAJAC, GBFUN, GBJAC, GUESS
* .. Intrinsic Functions ..

INTRINSIC ATAN
* .. Common blocks ..

COMMON /PROB/ETA, MU, LAMBDA, BETA0, PI
* .. Executable Statements ..

WRITE (NOUT,*) ’D02TVF Example Program Results’
WRITE (NOUT,*)
NMESH = 11
MESH(1) = 0.0e0
IPMESH(1) = 1
DO 20 I = 2, NMESH - 1

MESH(I) = 0.1e0*(I-1)
IPMESH(I) = 2

20 CONTINUE
IPMESH(NMESH) = 1
MESH(NMESH) = 1.0e0
DO 40 I = 1, NEQ

TOL(I) = 1.0e-5
M(I) = 1

40 CONTINUE
ETA = 0.01e0
MU = 0.02e0
LAMBDA = 0.0279e0
BETA0 = 1575.0e0
PI = 4.0e0*ATAN(1.0e0)
IFAIL = 0
CALL D02TVF(NEQ,M,NLBC,NRBC,NCOL,TOL,MXMESH,NMESH,MESH,IPMESH,

+ RWORK,LRWORK,IWORK,LIWORK,IFAIL)
IFAIL = -1
CALL D02TKF(FFUN,FJAC,GAFUN,GBFUN,GAJAC,GBJAC,GUESS,RWORK,IWORK,

+ IFAIL)
CALL D02TZF(MXMESH,NMESH,MESH,IPMESH,ERMX,IERMX,IJERMX,RWORK,

+ IWORK,IFAIL)
WRITE (NOUT,99999) NMESH, ERMX, IERMX, IJERMX,

+ (I,IPMESH(I),MESH(I),I=1,NMESH)
WRITE (NOUT,99998)
DO 60 I = 1, NMESH

IFAIL = 1
CALL D02TYF(MESH(I),Y,NEQ,MMAX,RWORK,IWORK,IFAIL)
WRITE (NOUT,99997) MESH(I), Y(1,0), Y(2,0), Y(3,0)

60 CONTINUE
STOP

*
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99999 FORMAT (/’ Used a mesh of ’,I4,’ points’,/’ Maximum error = ’,
+ e10.2,’ in interval ’,I4,’ for component ’,I4,//’ Mesh p’,
+ ’oints:’,/4(I4,’(’,I1,’)’,F7.4))

99998 FORMAT (/’ Computed solution at mesh points’,/’ x y1 ’,
+ ’ y2 y3’)

99997 FORMAT (’ ’,F6.3,1X,3e11.3)
END
SUBROUTINE FFUN(X,Y,NEQ,M,F)

* .. Scalar Arguments ..
real X
INTEGER NEQ

* .. Array Arguments ..
real F(NEQ), Y(NEQ,0:*)
INTEGER M(NEQ)

* .. Scalars in Common ..
real BETA0, ETA, LAMBDA, MU, PI

* .. Local Scalars ..
real BETA

* .. Intrinsic Functions ..
INTRINSIC COS

* .. Common blocks ..
COMMON /PROB/ETA, MU, LAMBDA, BETA0, PI

* .. Executable Statements ..
BETA = BETA0*(1.0e0+COS(2.0e0*PI*X))
F(1) = MU - BETA*Y(1,0)*Y(3,0)
F(2) = BETA*Y(1,0)*Y(3,0) - Y(2,0)/LAMBDA
F(3) = Y(2,0)/LAMBDA - Y(3,0)/ETA
F(4) = 0.0e0
F(5) = 0.0e0
F(6) = 0.0e0
RETURN
END
SUBROUTINE FJAC(X,Y,NEQ,M,DF)

* .. Scalar Arguments ..
real X
INTEGER NEQ

* .. Array Arguments ..
real DF(NEQ,NEQ,0:*), Y(NEQ,0:*)
INTEGER M(NEQ)

* .. Scalars in Common ..
real BETA0, ETA, LAMBDA, MU, PI

* .. Local Scalars ..
real BETA

* .. Intrinsic Functions ..
INTRINSIC COS

* .. Common blocks ..
COMMON /PROB/ETA, MU, LAMBDA, BETA0, PI

* .. Executable Statements ..
BETA = BETA0*(1.0e0+COS(2.0e0*PI*X))
DF(1,1,0) = -BETA*Y(3,0)
DF(1,3,0) = -BETA*Y(1,0)
DF(2,1,0) = BETA*Y(3,0)
DF(2,2,0) = -1.0e0/LAMBDA
DF(2,3,0) = BETA*Y(1,0)
DF(3,2,0) = 1.0e0/LAMBDA
DF(3,3,0) = -1.0e0/ETA
RETURN
END
SUBROUTINE GAFUN(YA,NEQ,M,NLBC,GA)

* .. Scalar Arguments ..
INTEGER NEQ, NLBC

* .. Array Arguments ..
real GA(NLBC), YA(NEQ,0:*)
INTEGER M(NEQ)

* .. Executable Statements ..
GA(1) = YA(1,0) - YA(4,0)
GA(2) = YA(2,0) - YA(5,0)
GA(3) = YA(3,0) - YA(6,0)
RETURN
END
SUBROUTINE GBFUN(YB,NEQ,M,NRBC,GB)
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* .. Scalar Arguments ..
INTEGER NEQ, NRBC

* .. Array Arguments ..
real GB(NRBC), YB(NEQ,0:*)
INTEGER M(NEQ)

* .. Executable Statements ..
GB(1) = YB(1,0) - YB(4,0)
GB(2) = YB(2,0) - YB(5,0)
GB(3) = YB(3,0) - YB(6,0)
RETURN
END
SUBROUTINE GAJAC(YA,NEQ,M,NLBC,DGA)

* .. Scalar Arguments ..
INTEGER NEQ, NLBC

* .. Array Arguments ..
real DGA(NLBC,NEQ,0:*), YA(NEQ,0:*)
INTEGER M(NEQ)

* .. Executable Statements ..
DGA(1,1,0) = 1.0e0
DGA(1,4,0) = -1.0e0
DGA(2,2,0) = 1.0e0
DGA(2,5,0) = -1.0e0
DGA(3,3,0) = 1.0e0
DGA(3,6,0) = -1.0e0
RETURN
END
SUBROUTINE GBJAC(YB,NEQ,M,NRBC,DGB)

* .. Scalar Arguments ..
INTEGER NEQ, NRBC

* .. Array Arguments ..
real DGB(NRBC,NEQ,0:*), YB(NEQ,0:*)
INTEGER M(NEQ)

* .. Executable Statements ..
DGB(1,1,0) = 1.0e0
DGB(1,4,0) = -1.0e0
DGB(2,2,0) = 1.0e0
DGB(2,5,0) = -1.0e0
DGB(3,3,0) = 1.0e0
DGB(3,6,0) = -1.0e0
RETURN
END
SUBROUTINE GUESS(X,NEQ,M,Z,DMVAL)

* .. Scalar Arguments ..
real X
INTEGER NEQ

* .. Array Arguments ..
real DMVAL(NEQ), Z(NEQ,0:*)
INTEGER M(NEQ)

* .. Local Scalars ..
INTEGER I

* .. Executable Statements ..
Z(1,0) = 1.0e0
Z(2,0) = 1.0e0
Z(3,0) = 1.0e0
Z(4,0) = Z(1,0)
Z(5,0) = Z(2,0)
Z(6,0) = Z(3,0)
DO 20 I = 1, NEQ

DMVAL(I) = 0.0e0
20 CONTINUE

RETURN
END

9.2 Program Data

None.
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9.3 Program Results

D02TVF Example Program Results

Used a mesh of 21 points
Maximum error = 0.14E-07 in interval 5 for component 1

Mesh points:
1(1) 0.0000 2(3) 0.0500 3(2) 0.1000 4(3) 0.1500
5(2) 0.2000 6(3) 0.2500 7(2) 0.3000 8(3) 0.3500
9(2) 0.4000 10(3) 0.4500 11(2) 0.5000 12(3) 0.5500

13(2) 0.6000 14(3) 0.6500 15(2) 0.7000 16(3) 0.7500
17(2) 0.8000 18(3) 0.8500 19(2) 0.9000 20(3) 0.9500
21(1) 1.0000

Computed solution at mesh points
x y1 y2 y3

0.000 0.752E-01 0.180E-04 0.498E-05
0.050 0.761E-01 0.789E-04 0.219E-04
0.100 0.766E-01 0.315E-03 0.892E-04
0.150 0.758E-01 0.101E-02 0.298E-03
0.200 0.726E-01 0.225E-02 0.713E-03
0.250 0.678E-01 0.311E-02 0.108E-02
0.300 0.641E-01 0.256E-02 0.984E-03
0.350 0.629E-01 0.129E-02 0.550E-03
0.400 0.633E-01 0.414E-03 0.197E-03
0.450 0.643E-01 0.912E-04 0.478E-04
0.500 0.653E-01 0.159E-04 0.881E-05
0.550 0.663E-01 0.277E-05 0.151E-05
0.600 0.673E-01 0.628E-06 0.313E-06
0.650 0.683E-01 0.219E-06 0.964E-07
0.700 0.693E-01 0.124E-06 0.487E-07
0.750 0.703E-01 0.116E-06 0.409E-07
0.800 0.713E-01 0.170E-06 0.551E-07
0.850 0.723E-01 0.370E-06 0.113E-06
0.900 0.733E-01 0.111E-05 0.322E-06
0.950 0.743E-01 0.420E-05 0.118E-05
1.000 0.752E-01 0.180E-04 0.498E-05
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